
ARx_Tknq.ag

ARx_Tknq.ag ii

COLLABORATORS

TITLE :

ARx_Tknq.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY August 3, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Tknq.ag iii

Contents

1 ARx_Tknq.ag 1

1.1 ARexxGuide | TECHNIQUES . 1

1.2 ARexxGuide | Techniques | ABOUT THIS SECTION . 2

1.3 ARexxGuide | Techniques (1 of 20) | COUNTCHAR() . 3

1.4 ARexxGuide | Techniques (2 of 20) | COUNTWORDS() . 3

1.5 ARexxGuide | Techniques (3 of 20) | FORMAT OUTPUT . 4

1.6 ARexxGuide | Techniques (4 of 20) | FORMAT() . 6

1.7 ARexxGuide | Techniques (5 of 20) | ADDCOMMA() . 8

1.8 ARexxGuide | Techniques | ADDCOMMA() | Note: Alternative . 9

1.9 ARexxGuide | Techniques (6 of 20) | WORDWRAP() . 10

1.10 ARexxGuide | Techniques (7 of 20) | PARSEFILENAME() . 11

1.11 ARexxGuide | Techniques (8 of 20) | CONSOLE WINDOWS . 13

1.12 ARexxGuide | Techniques (9 of 20) | PRINTER OUTPUT . 15

1.13 ARexxGuide | Techniques (10 of 20) | READ/WRITE FILES . 15

1.14 ARexxGuide | Techniques (11 of 20) | COMMAND PIPE . 16

1.15 ARexxGuide | Techniques (12 of 20) | USING MESSAGE PORTS . 17

1.16 ARexxGuide | Techniques (13 of 20) | GLOBAL VARIABLES . 18

1.17 ARexxGuide | Techniques (14 of 20) | ENVIRONMENTAL VARIABLES . 20

1.18 ARexxGuide | Techniques (15 of 20) | IN-LINE DATA . 22

1.19 ARexxGuide | Techniques (16 of 20) | DATA SCRATCHPAD . 22

1.20 ARexxGuide | Techniques (17 of 20) | SEEKTORECORD() . 24

1.21 ARexxGuide | Techniques (18 of 20) | INTERPRETED VARIABLES . 24

1.22 ARexxGuide | Techniques (19 of 20) | CHECK UNIQUE DATATYPES . 26

1.23 ARexxGuide | Techniques (20 of 20) | LIBVER() . 27

ARx_Tknq.ag 1 / 28

Chapter 1

ARx_Tknq.ag

1.1 ARexxGuide | TECHNIQUES

AN AMIGAGUIDE® TO ARexx Second edition (v2.0a)
by Robin Evans

About this section
Techniques:

Strings

CountChar(): count characters with COMPRESS()

CountWords(): count words in a file

Format data into table form

Format(): round and format a number

AddComma(): add commas to an integer

Alternative: add commas in a loop

WordWrap(): wordwrap text to a defined length

ParseFileName(): split name of file from path
Input/Output

Open console windows for I/O

Output text to a printer

Read data from one file, write to another

Retrieve result of AmigaDOS command

Getting and sending message packets
Data storage and retrieval

Store global variables on the clip list

ARx_Tknq.ag 2 / 28

Get and set environmental variables

Retrieve data from source code

Create a data scratchpad with PUSH, QUEUE, and PULL

SeekToRecord(): pull single record from data file

Use VALUE() to create interpreted variable names

Check unique datatypes with VERIFY()

Determine version number of any library
Other hints: < Press RETRACE to return to this page >

Brief examples of instructions and functions are
presented throughout ARexxGuide. The following nodes
include more extended examples.

Translate a string to lower-case
Using the elapsed time counter
Error messages: redirecting to a file
PARSE: pull field values from one-line records
Set sequential bookmarks in TurboText
Varieties of looping
Setting a default prompt for PULL instruction
Respond to asynchronous user input
Make variable declarations required
Emulate the standard-REXX WordPos() function
Store contents of a disk file in memory
Retrieve name and size of default system font
Pause a script until a program has started

Copyright © 1993,1994 Robin Evans. All rights reserved.

This guide is shareware . If you find it useful, please register.

1.2 ARexxGuide | Techniques | ABOUT THIS SECTION

Techniques
~~~~~~~~~~
This section presents code examples that serve two purposes:

They show ARexx instructions and functions in context of complete
program examples.

Most of the code examples presented here are complete subroutines
that can be copied and pasted into scripts to solve frequently-
encountered problems.

Users of versions of AmigaGuide that support clipboard operations can copy
the examples directly from the guide. Others can copy the examples from
the file ARx_Tknq.ag -- the file you’re looking at now.

Many of the routines presented here use the PROCEDURE instruction to
isolate the variable references in the subroutine from other sections of



ARx_Tknq.ag 3 / 28

the program. That instruction is valid, however, only when the subroutine
is invoked as a subroutine. It may not be used and should be deleted if the
code is stored as an external function .

1.3 ARexxGuide | Techniques (1 of 20) | COUNTCHAR()

Count characters using COMPRESS()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Used in conjunction with LENGTH() , the COMPRESS() function provides a
way to count characters in a string. The following fragment demonstrates
the technique:

/* Count characters */
Str = ’Molloy|Mollone|Godot|Krapp|’
CharNum = length(Str)-length(compress(Str,’|’))
say ’There are’ CharNum ’"|" characters in’ Str’.’

If the character being counted is used as a field divider, as it is in
this example, then this technique will count the number of fields in the
string.

Using the SHOW() function, the following fragment will return a count of
public message ports even if some of them use names with spaces:

/* Count ports */
PLIST = show(’P’,,’0a’x)
NumPorts = length(PList) - length(compress(PList, ’0a’x))
say Numports ’ports are open.’

The count can include multiple characters:

/* Count digits */
PrdNum = ’1289-ABC’
Dig = length(PrdNum) - length(compress(PrdNum, xrange(0,9)))
say ’There are’ Dig ’digits in "’PrdNum’".’

This technique could be generalized as a function. Following the syntax of
built-in functions like POS() , the ‘needle’ (item to be found) is the
first argument in this function followed by the ‘haystack’ -- the string
to be searched. Because the ARG() function is used, the function does
not make any variable assignments, so PROCEDURE is unnecessary.

CountChar:
return length(arg(2)) - length(compress(arg(2), arg(1)))

Next: COUNTWORDS() | Prev: Tutorial | Contents: Tutorial

1.4 ARexxGuide | Techniques (2 of 20) | COUNTWORDS()

Count words in a file
~~~~~~~~~~~~~~~~~~~~~



ARx_Tknq.ag 4 / 28

This is a simple word-counting program. It reads each line in a file and
counts the words. Because the contents of a line are not important,
READLN() is nested within the WORDS() function. The definition of
‘word’ here is that used by ARexx: any collection of characters divided by
a space or a line-end character from other collections.

CountWords:
arg FileName
if FileName = ’’ | FileName = ’?’ then do

say ’WordCount <FileName>’
say ’ Specify the name of the file to be counted.’
exit 0

end
WdTotal = 0
if open(6IFile, FileName, ’R’) then do

say ’Counting words in’ FileName’.’
do until eof(6IFile)

WdTotal = WdTotal + words(READLN(6IFile))
end
call close 6IFile
say ’There are’ WdTotal ’words in’ FileName’.’
return WdTotal

end
else do

say ’WordCount failed. File not found’
exit 20

end

/* ------------------------ end example ------------------------ */

Also see ARG instruction
SAY instruction
OPEN() function
DO instruction

Next: FORMAT OUTPUT | Prev: COUNTCHAR() | Contents: Tutorial

1.5 ARexxGuide | Techniques (3 of 20) | FORMAT OUTPUT

Formatting output with RIGHT(), LEFT(), and TRUNC()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because they will pad a string with spaces as well as truncate it, the
RIGHT() and LEFT() functions are useful in preparing formatted output

for tables and lists.

The following program segment demonstrates the technique:

(The comma continuation character is used twice, allowing the long
definition of a SAY expression to be spread over two line.)

/* TableFormat.rexx **
** Format variables for a table */

/* Use compound variables to store the values to be used in table */
List.Prod.1 = ’Widget wacker’; List.Price.1 = 99; List.Code.1 = ’WID01-W’

ARx_Tknq.ag 5 / 28

List.Prod.2 = ’Foo Barian’; List.Price.2 = 182.95; List.Code.2 = ’FOO08-D’
List.0 = 2

/* Variables determine the width of the listings */
PrdWd = 15; PrcWd = ’9’; CdWd = 8

/* Output heading */
say center(’Product’, PrdWd) || center(’Price’, PrcWd) ||,

center(’Code’, CdWd-1)

/* Output divider lines */
say copies(’-’, PrdWd - 1) copies(’-’, PrcWd - 1) copies(’-’, CdWd-1)

/* Output each product listing from within a loop */
do i = 1 to List.0

say left(List.Prod.i, PrdWd) || right(trunc(List.Price.i,2),PrcWd-1),
left(List.Code.i, CdWd)

end

/* OUTPUTS: >>>

Product Price Code
-------------- -------- -------
Widget wacker 99.00 WID01-W
Foo Barian 182.95 FOO08-D

*/

In constructing each listing with the DO loop, three functions are used:
TRUNC() adds two decimal places to [List.Price] while RIGHT() pads the

number with spaces on the left side so that numbers up to four digits will
be decimal-aligned. Other versions of REXX include a function, called
format(), that will perform these operations in one step. A version of
that function, FORMAT(), is described in the following node and could be
used in place of right() and trunc() here.

COPIES() replicates the "-" character enough times to produce a dashed
divider of the appropriate size under each heading.

All three concatenation operators are used in building product listings.
The ’||’ operator is used to prevent an extra space from being introduced
between the [List.Prod] and [List.Price]. But extra spaces are wanted
between [List.Price] and [List.Code]. To get them, a one-space string is
added to the right side of [List.Price] using the abuttal operator and
another space is added by concatenating that value to [List.Code] using
the space operator.

Also see
FORMAT(): User function to format numbers

ADDCOMMA(): User function to add commas
Next: FORMAT() | Prev: COUNTWORDS() | Contents: Tutorial

ARx_Tknq.ag 6 / 28

1.6 ARexxGuide | Techniques (4 of 20) | FORMAT()

FORMAT(): a user function to format numbers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TRL2 defines a function missing from ARexx that will round and format a

number to a given specification. Although the standard function can also be
used to control the presentation of numbers in exponential notation, its
simpler syntax is this:

format(<number>, [<before>], [<after>])

If number alone is supplied, the result is the same as that returned by
the expression <number> + 0: leading 0’s are removed from the number and
it is formatted according to the current setting of NUMERIC DIGITS .

If <before> is supplied, it must be a number equal to or greater than the
length in the integer part of <number>. The result will be returned
right-justified to <before> spaces.

If <after> is supplied, it must be a number. The fractional part of
<number> is rounded (not just truncated) to <after> digits.

The following user function provides these features for an ARexx script.
If there is a problem with the received argument, the function attempts to
duplicate the kind of error reporting that would be provided by a built-in
function, but it cannot generate a true syntax error, so the error will not
be trapped by a SIGNAL ON SYNTAX routine.

/* FORMAT(): format(<number>, [<before>], [<after>]) */

Format: /* procedure */ /* Use procedure for internal function */
arg number, before, after

/* Record the line number from the caller to be used in case **
** of a syntax error. The SIGL variable is available only if **
** this is used as an internal_function. */

CallLine = SIGL
/* SIGL won’t be set if called as external function */

if ~datatype(CallLine, ’N’) then CallLine = ’??’

/* Make sure we have a number as first (required) argument */
if ~datatype(number, ’N’) then do

if number = ’’ then
fc = 17 /* Wrong number of arguments */

else
fc = 47 /* Arithmetic conversion error */

signal FormatSyntaxError
end

/* Arithmetic operation reformats the number to NUMERIC **
** DIGITS setting. */

num = number + 0

/* Return the reformatted number if other options not spec’d. */
if before = ’’ & after = ’’ then

return num
else do



ARx_Tknq.ag 7 / 28

/* split the number into fraction and integer. This section**
** mixes text operations with arithmetic operations. */

parse var num integer ’.’ fraction
/* Set defaults for non-spec’d arguments */

if before = ’’ then before = length(integer)
if after = ’’ then after = length(fraction)

/* Check for syntax errors. */
if ~datatype(before, N) | ~datatype(after, N) then

do fc = 18
signal FormatSyntaxError

end
/* [before] argument must be at least as long as integer */

if before < length(integer) then do
fc = 18
signal FormatSyntaxError

end
/* add an appropriate value of .5 to number to round it */

if after ~= length(fraction) then do
fraction = trunc((’.’fraction’0’) +, /* cont’d on next line */

(’.’copies(’0’, after)’5’), after)
/* Numbers created as text strings are still numbers */

integer = integer + (fraction % 1)
fraction = substr(fraction, 3)

end
if fraction >= 0 then

return right(integer, before)’.’fraction
else

return right(integer, before)
end

FormatSyntaxError:
/* Acts like a syntax error in a built-in function would **
** except that this error won’t be trapped by SIGNAL ON **
** SYNTAX . Output to STDERR if that file is open so msg **
** will go where other error messages go. */

if show(’F’, STDERR) then
call writeln(STDERR, ’+++ Error’ fc ’in line’ CallLine’:’,

/* continued from line above */ errortext(fc))
else

say ’+++ Error’ fc ’in line’ CallLine’:’ errortext(fc)
/* Return an non-numeric value on error if this was called **
** as an external function. Otherwise exit script with **
** error code. If called as external program, then caller **
** will have to check for error return. */

parse source Func .
if Func = ’FUNCTION’ then

exit "Err"
else

exit 10

/* -------- end function definition -------- */

Also see DATATYPE() function
SIGL special variable
SIGNAL instruction
IF instruction
Arithmetic operators



ARx_Tknq.ag 8 / 28

SUBSTR() function
Standard I/O functions

Next: ADDCOMMA() | Prev: FORMAT OUTPUT | Contents: Tutorial

1.7 ARexxGuide | Techniques (5 of 20) | ADDCOMMA()

Add commas to a number
~~~~~~~~~~~~~~~~~~~~~~
Numbers in ARexx can contain only digits, an optional decimal point

‘.’, and/or an ‘e’ to indicate exponential notation . Even though it will
no longer be considered a valid number for arithmetic operations , a
large number will be more readable in charts and other output if it is
divided with commas. If the number needs to be used for an arithmetic
operation, the commas can be removed with the COMPRESS() function.

The function below will add commas in the appropriate places to a number.
It respects any fractional amount that was included with the number and
also leaves unchanged any leading spaces that were used with the number.

If the number includes leading zeros, it removes them, but adds leading
spaces in their place.

Once the number is sent to the function, it is always treated as a text
string and never as a number. It will not, therefore, be reformatted to

the DIGITS() setting. This makes it possible to format numbers that are
much larger than the current setting of NUMERIC DIGITS .

More information: Numbers as character strings

The function returns the string ’ERROR’ if it finds something wrong with
the received argument.

ADDCOMMA: /* NumWithComma = AddComma(<number>) */
arg integer ’.’ fraction
if integer’.’fraction <= 0 then return integer’.’fraction

/* How many leading spaces or 0’s are included? */
LSpace = verify(integer,’123456789’,’m’) -1

/* Get rid of all spaces and leading 0’s */
integer = strip(strip(integer,l,’ 0’))

/* Will format a max of 17 digits. If you need more, **
** add ’+3 p7’ etc to parse and to ’integer = ’ below */

if length(integer) < 18 & datatype(integer, ’N’) then do
/* Where should commas start? */

FPos = length(integer)//3
parse var integer p1 +FPos p2 +3 p3 +3 p4 +3 p5 +3 p6

/* p1 = integer when it divides equally at 3 */
if FPos = 0 then p1 = ’’

/* Add commas, then strip off extras */
integer = strip(p1’,’p2’,’p3’,’p4’,’p5’,’p6,, ’,’)

end
/* Add fraction & leading spaces back into the string */

if fraction > ’’ then
return copies(’ ’, Lspace)integer’.’fraction

else

ARx_Tknq.ag 9 / 28

return copies(’ ’, Lspace)integer

/* ------------------- end function -------------------- */

More information
Testing alternate coding methods

Also see VERIFY() function
STRIP() function
LENGTH() function
PARSE position patterns
COPIES() function

Next: WORDWRAP() | Prev: FORMAT() | Contents: Tutorial

1.8 ARexxGuide | Techniques | ADDCOMMA() | Note: Alternative

Testing alternate coding methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The

AddComma()
routine presented here uses the PARSE instruction to

break an integer into parts so commas can be inserted. The disadvantage of
the method is that it is limited to formatting numbers of a set maximum
length. The maximum can be easily expanded, but the routine will never be
able to handle any number that is thrown at it, and will therefore break
under unusual circumstances.

An alternative is to use the REVERSE() function and a loop to add
commas so that a number of any length can be sent to the routine:

/**/
arg integer
rnum = reverse(integer)
do cpos = 3 by 4 while cpos < length(rnum)

rnum = insert(’,’, rnum, cpos)
end
return reverse(rnum)

This method is also more language-general: versions of the routine coded
in different programming languages will usually look similar. The parse
method, on the other hand, uses uncommon REXX conventions.

Which method should be used? It is partly an aesthetic choice. Some will
find one method more sensible and more attractive than the other, but
there are also issues of efficiency. A good way to test the efficiency of
a routine is to run it through a timed loop using the elapsed-time
counter:

/**/
arg integer
call time(r)
do 200

rnum = reverse(integer)
do cpos = 3 by 4 while cpos < length(rnum)



ARx_Tknq.ag 10 / 28

rnum = insert(’,’, rnum, cpos)
end
dinteger = reverse(rnum)

end
say ’ Do:’ time(r)
do 200

if length(integer) > 21 then say ’ERROR’
FPos = length(integer)//3
parse var integer p1 +FPos p2 +3 p3 +3 p4 +3 p5 +3 p6 +3 p7 +3 p8
if FPos = 0 then p1 = ’’
pinteger = strip(p1’,’p2’,’p3’,’p4’,’p5’,’p6’,’p7’,’p8,,’,’)

end
say ’Parse:’ time(e)
say dinteger
say pinteger

Adding another ‘px’ has an insignificant effect on the PARSE version which
runs at about the same speed no matter what size the number is. The DO
version starts out faster but will slow down significantly when the
numbers get very large. (Again, though, that will depend on the machine.)

The timing results will be different on different systems, but running a
test like this is often helpful in deciding which of two alternatives to
use in a given situation. If most numbers are small, then the DO version
will be faster in nearly all cases, but as numbers get larger, the PARSE
version becomes ever more attractive.

If the code is run within a script that can assure that a number will not
be larger than what can be handled by the PARSE instruction, then the
length check can be deleted, making the code for that method even more
efficient.

-----------------------------------------------------------

Thanks to the readers of Usenet’s comp.lang.rexx for a discussion of this
routine and for suggesting the REVERSE/DO alternative; and to Richard
Stockton of Gramma’s Software and Gramma’s BBS for inspiring the original
version of the routine. His approach to solving the problem is different
and can be seen by calling the BBS and checking the wonderful collection
of ARexx questions and solutions in the ARexx archive category.

Next: ADDCOMMA() | Prev: ADDCOMMA() | Contents: Tutorial

1.9 ARexxGuide | Techniques (6 of 20) | WORDWRAP()

Word-wrap text to a defined line length
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When text is output to the screen or to the printer, it is often useful to
have it wrap at a defined line-length. That can be done easily with this
subroutine . It takes as arguments a string and a line length and

creates a series of compound variables that contain the original text
divided into lines that are no longer than the specified length.

WordWrap: procedure expose Line.

ARx_Tknq.ag 11 / 28

/* Arguments: **
** Text := The string that is to be split into parts **
** Length := Maximum length of lines desired. */
parse arg Text, Length

Line. = ’’ /* All compounds are now null */
EndPos = length(Text); DivPos = 1 /* Preliminary values for loop */

do i = 1 while EndPos <= length(Text)
EndPos = lastpos(’ ’,Text’ ’, DivPos + Length+1)

/* Handle a word that’s bigger than the line length by **
** splitting it arbitrarily at the line length */

if EndPos < DivPos then do
EndPos = DivPos + Length - 1

/* Add a hyphen to the original string with INSERT() . **
** Since this subroutine is defined as a procedure , this **
** change to [Text] will not affect any variable with the **
** same name in the calling environment. */

Text = insert(’- ’, Text, EndPos-2)
end
Line.i = substr(Text, DivPos, EndPos-DivPos)

/* Add one to DivPos because we want to get rid of the space **
** at the start of each line. */

DivPos = EndPos + 1
end
Line.0 = i - 1
return i - 1

/* ------------------------ end example ------------------------ */

Because the subroutine creates a set of compound variables that must be
accessible to the calling environment, this routine must be included as an
internal function within the calling script. An external function

would need to send the split lines back to the caller by a different
method.

The routine will handle a word that is longer than the defined line
length, but does it inelegantly. It simply splits the word at an arbitrary
point. Although it is possible in English to split most words at syllable
breaks by noting the positions of consonants and vowels, no attempt is
made here to do that.

Also see LASTPOS() function
SUBSTR() function
INSERT() function
LENGTH() function
DO instruction
PROCEDURE instruction
EXPOSE instruction

Next: PARSEFILENAME() | Prev: ADDCOMMA() | Contents: Tutorial

1.10 ARexxGuide | Techniques (7 of 20) | PARSEFILENAME()

ARx_Tknq.ag 12 / 28

Split path or filename from file specification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is often necessary to separate a file name from the full path
specification. LASTPOS() is ideally suited to this task since it will
locate the last divider character ‘/’ even in a deeply nested file
specification.

In the following routine, which can be called either as in internal or
external function , the LASTPOS() function is used twice, once to locate

the device specification -- ‘:’ -- (which could also have been found with
POS() since there should be only one colon in the name), and again to

find the last directory divider. MAX() , then, returns the larger of
those numbers.

Since the RETURN instruction can send back only a single value, this
function can be used to retrieve either the filename only (if the second
argument if ’FILE’ or is omitted), or to retrieve the path specification
without the filename (if the second argument is anything other than ’F’ or
’FILE’). ABBREV() is used to check the second argument. Since a length
was not specified, a null value (from an omitted argument) will return
TRUE.

/* Split filename from path */
ParseFileName: /*procedure*/ /* add procedure for internal func. */

/* Arguments: **
** FilePath := Any valid AmigaDOS file specification **
** Part := [Optional] ’F’, ’FILE’, or omit to get filename **
** Anything else to retrieve the path */
parse arg FilePath, Part

DivPos = max(lastpos(’:’, FilePath),lastpos(’/’, FilePath)) +1
if abbrev(’FILE’, upper(Part))

then return substr(FilePath, DivPos)
else

return strip(left(FilePath, DivPos-1),’T’, ’/’)

/* ------------------------ end example ------------------------ */

Since the function is meant to return either a filename or a path, but not
both, the original string is divided using either SUBSTR() or LEFT() .
If both parts were needed, however, it would be more efficient to use the
PARSE instruction:

parse var FilePath PathSpec =DivPos FileName

The ‘=’ sign precededing [DivPos] indicates that the value of the variable
is to be used as a positional marker .

The PROCEDURE keyword is used here to protect the variables declared
in this subroutine from any similarly-named variables in the calling
environment. In a short subroutine like this one, however, it’s sometimes
useful to avoid any variable assignments . The following variation of the
same function uses the ARG() function and nested expressions, but
returns the same information:

/* Split filename from path. No assignments in subroutine */
ParseFileName:



ARx_Tknq.ag 13 / 28

/* Arguments: **
** arg(1) := Any valid AmigaDOS file specification **
** arg(2) := [Optional] ’F’, ’FILE’, or omit to get filename **
** Anything else to retrieve the path */

if abbrev(’FILE’, upper(arg(2)))
then return substr(arg(1),, /* Comma = continuation token */

max(lastpos(’:’, arg(1)),lastpos(’/’, arg(1))) +1)
else

return strip(left(arg(1),max(lastpos(’:’,arg(1)),,
lastpos(’/’,arg(1)))), ’T’, ’/’)

/* ------------------------ end example ------------------------ */

Next: CONSOLE WINDOWS | Prev: WORDWRAP() | Contents: Tutorial

1.11 ARexxGuide | Techniques (8 of 20) | CONSOLE WINDOWS

Custom console windows
~~~~~~~~~~~~~~~~~~~~~~
Several function libraries are available to add graphic requesters and
menus to an ARexx script. Using those libraries can make a script more
elegant since user interaction is done with the sophisticated GUI tools
that Amiga users expect.

The power of console windows should not be overlooked, however. Like its
parent, REXX, ARexx was designed mainly for the simple character-based
input and output provided console windows. Unlike the GUI tools that
require certain non-system libraries, console I/O is always available
without additional programs or libraries.

Variations of the console I/O routines explained here are used throughout
ARexxGuide to provide interactive examples. (See Tutorial Contents for a
list of all the examples.)

A simple informational window:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This subroutine can be used as an internal function in a script that
needs to present simple informational messages to users. The only argument
to the function, [InfoMsg], is the message that is to be presented.
Multiple lines can be included in the string by indicating with the
character ‘\’ the places where the string should be broken into a new line.
(The

WordWrap()
user function could be substituted to automatically

word-wrap the text.)

The window is opened as a RAW: console (see any Amiga OS reference for
more information on that) rather than a CON: device because it is only
in a RAW: console that READCH() is able to retrieve a single keystroke
without waiting for the <Enter> key.

InfoCon: procedure
/* Open a raw: window to display information */



ARx_Tknq.ag 14 / 28

parse arg DisplayMsg
/* Determine depth of window by multipying 11 (for interlace font **
** size) by the number of rows. */

depth = 27 + (11 * (countchar(’\’, DisplayMsg) + 3))
if open(6Info, ’raw:10/0/346/’Depth, w) then do

call writeln(6Info, translate(DisplayMsg, ’0a’x, ’\’))
call writech(6Info, ’0a’x’ <Press any key> ’)
call readch(6Info)
call close 6Info
return 1

end
else

return 0

CountChar:
return length(arg(2)) - length(compress(arg(2), arg(1)))

/* ------------- end user function ---------------- */

The
CountChar()
function used above is explained in another note.

Full input/output in a new window
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The informational window presented in the first example uses the simplest
of input and output, waiting for a single keystroke of any kind before
closing the window. More complex interaction is possible in ARexx, however.

When a script is launched from a shell, it can use the same shell for its
interaction. That’s the approach taken with the Uncrunch.rexx utility
explained in another tutorial. But since some Amiga users don’t use a
shell even for things like ARexx scripts, the writer of a script cannot be
sure that a shell will be available.

The function below creates a new console window from within the script and
redirects the standard input/output streams to that window.

FullIOwindow:
call close STDOUT
if open(STDOUT, ’con:10/98/346/45/Window title’,W) then do

call close STDIN
call open(STDIN, ’*’, R)

end
/********* Do stuff here ************/

call close STDOUT
call close STDIN
call pragma(’*’)

To see this routine at work, run any of the interactive examples listed in
the Tutorial Contents . All of them use a variation of this routine to
open the windows in which the example is presented.

Next: PRINTER OUTPUT | Prev: PARSEFILENAME() | Contents: Tutorial

ARx_Tknq.ag 15 / 28

1.12 ARexxGuide | Techniques (9 of 20) | PRINTER OUTPUT

Output text to printer
~~~~~~~~~~~~~~~~~~~~~~
This example should output just two lines to the printer since the PrintVar
function outputs lines with the writech() function that does not
automatically add a line-feed to the output string.

When a line-feed is desired, as it is in the the third call to PrintVar(),
the hex-string ’0a’x (the line-feed character) is concatenated to the
string.

/* Printer test */
call Printvar(’This is a test’)
call printvar(’ of adding more text’)
call printvar(’ to a single line.’||’0a’x)
call printvar(’This should be the second line’)
call close ’Printer’
exit

/* Output the contents of a variable to the printer. **
** Function can be called repeatedly without forcing a form-feed **
** on most printers. */
PrintVar:

/* Argument: **
** ToPrint := Text to be printed */
parse arg ToPrint

/* Use SHOW() to find out if channel to printer has been **
** opened. Open it if it’s not yet available */

if ~show(’F’, ’Printer’) then
/* The PRT: device can be opened just like any file. */

if ~open(’Printer’, ’PRT:’) then
return ’ERROR’

/* Return the number of characters written */
return WRITECH(’Printer’, ToPrint)

/* ------------------------ end example ------------------------ */

Also see I/O to other devices
OPEN() function
CALL instruction

Next: READ/WRITE FILES | Prev: CONSOLE WINDOWS | Contents: Tutorial

1.13 ARexxGuide | Techniques (10 of 20) | READ/WRITE FILES

Read and write files
~~~~~~~~~~~~~~~~~~~~
This example could be used as a script, or as an external function or
internal function . It will open one file -- the first argument --

and output its contents to a second file -- the second argument.

The READLN() function is used to get input. The WRITELN() function puts

ARx_Tknq.ag 16 / 28

the line into a new file unless it begins with the character ‘@’. The
ABBREV() function is used to check for that character in column 1, but

because the function respects spaces, a line that starts with spaces is
not dropped.

/* Output selected lines of one file to a new file */
/* Arguments: **
** InputFile := Name of file to read **
** OutputFile := Name of file to create */

parse arg InputFile OutPutfile .

/* Do very simple error checking */
if InputFile = ’’ | OutputFile = ’’ then return ’ERROR’
if ~open(6Input, InputFile, ’R’) then return ’ERROR’
if ~open(6Output, OutputFile, ’W’) then return ’ERROR’

/* Read all lines in input file */
do until eof(6Input)

ThisLine = readln(6Input)
if ~abbrev(ThisLine, ’@’,1) then

call writeln(6Output, ThisLine)
end
call close 6Input; call close 6Output

/* ------------------------ end example ------------------------ */

Also see EOF() function
DO instruction

Next: COMMAND PIPE | Prev: PRINTER OUTPUT | Contents: Tutorial

1.14 ARexxGuide | Techniques (11 of 20) | COMMAND PIPE

Getting the output from a command
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Although most application programs allow direct interaction between ARexx
scripts that the host environment, some hosts will not return
information to ARexx. AmigaDOS is a prime example.

WShell offers an elegant way to read the output of AmigaDOS commands --
with the ExecIO utility. On the standard Amiga shell, however, the best
way to read the output of a command is to redirect the output to a file
or named pipe whose contents can then be read by the script:

This example uses the ‘TO’ keyword to redirect the output of the the
AmigaDOS ‘LIST’ command to a file in the T: directory. (Even if a command
does not support a ‘TO’ option, its output can be redirected using the ‘>’
redirection character which is explained more fully in an OS reference.)

/**/
address command
’list quick files nohead to t:ls’
if OPEN(1List, ’t:ls’, ’r’) then
do i = 1 while ~eof(1List)

File.i = readln(1List)



ARx_Tknq.ag 17 / 28

end
call CLOSE 1List
call delete ’t:ls’

Current versions of AmigaDOS include a facility that will send the output
of a command to something that looks like a file, but uses RAM for only as
long as needed to make use of the information. Called "named pipes," these
virtual files are an ideal target for command output that is to be used
within an ARexx script.

Instead of creating a file that will remain until deleted, a named pipe
can be used to hold the information temporarily:

/**/
address command
’run >nil: list quick files nohead to pipe:ls’
if OPEN(1List, ’pipe:ls’, ’r’) then
do i = 1 while ~eof(1List)

File.i = readln(1List)
end
call CLOSE 1List

The PIPE: device must be mounted before it can be used. That is done
automatically in the default startup procedures for 2.x and 3.x versions
of the OS. Consult an AmigaDOS reference for more information about pipes.

Also see OPEN() function
READLN() function
EOF() function
DELETE function
DO instruction

Next: USING MESSAGE PORTS | Prev: READ/WRITE FILES | Contents: Tutorial

1.15 ARexxGuide | Techniques (12 of 20) | USING MESSAGE PORTS

Using message ports from an ARexx script
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This code fragment demonstrates the use of the repertoire of port
functions available in ARexx.

More information: Message port functions

/************ Ports example ***/

/* ’MYPORT’ will appear on ports list */
/* [OPort] holds the address that will be used to close the port */

OPort = openport(’MYPORT’)
/* Loop until a Cmd changes the value of [Status] */

do until Status = ’CLOSE’
call waitpkt(’MYPORT’)
Packet = getpkt(’MYPORT’)

/* Make sure we have a real message in [Packet] */
if Packet ~= null() then do

Cmd = getarg(Packet)

ARx_Tknq.ag 18 / 28

/* Do something with Cmd **
** Since the command and its arguments are usually provided **
** as a single string, the following could be used as well: **
** interpret Cmd **
** It’s a good idea to check the command, however, to make **
** sure it’s valid for this context. */

call reply(Packet, rv)
/* [rv], above, should be an appropriate return code */

end
end
call closeport OPort
exit

/* -------------------------- end example --------------------------- */

Because of the loop at DO UNTIL , this example will keep a port open
until it is specifically closed with a command such as ’Status = CLOSED’
received from an external process.

Commands would be sent to this process by ADDRESS MYPORT <Cmd> ’ where
<Cmd> is a command that will be understood by other routines in this
program.

Also see IF instruction
NULL() function

Next: GLOBAL VARIABLES | Prev: COMMAND PIPE | Contents: Tutorial

1.16 ARexxGuide | Techniques (13 of 20) | GLOBAL VARIABLES

Global variables on the clip list
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The clip list gives an ARexx script access to a pool of global variables
maintained by the resident process.

Clip list variables are set or cleared in a special way by using the
SETCLIP() function or the RXSET command utility. Their values are

retrieved using the GETCLIP() function.

Because they retain their values even after the program that sets them
exits, clip list variables can be used to maintain user settings called
by different scripts.

The following fragment demonstrates how the clip list might be used to
hold information for a set of ARexx scripts used as an online message
reader. The file containing these instructions can be called by the script
that launches the reader. Any other script needing the information can
then retrieve (or change) the values set in the initial script.

/* Preferences clips for a message reader */
call setclip("Rd_Sig", "Robin Evans")
call setclip("Rd_RepDir", "temp:")
call setclip("Rd_DlDir", "temp:")
call setclip("Rd_MalFile", "cap:Email.snd")
call setclip("Rd_InsName", "1")



ARx_Tknq.ag 19 / 28

call setclip("Rd_InsMsg", "0")

Macros in an ARexx command host like TurboText could retrieve values from
the clip list whenever needed, giving an overall consistency to a complex
set of related scripts. In TurboText and several other programs, an
in-line script can be bound to a particular key, so that pressing that

key will call the macro. The following line from a TurboText
key-definitions file would cause a name from the clip list to be inserted
in the document when the key combination Alt-I is pressed:

ALT-I ExecARexxString Insert getclip(’Rd_Sig’)

An application using the clip list in this way will need some way to save
preferences that were changed while the scripts were running, and should,
ideally, clean up the clip list when the values it has set are no longer
needed. The following program accomplishes both tasks and could be called
by the script that closes the reader:

/* Save values from clip list to a file and clear the clips */

if open(PrfFile, "rexx:Rd_Prefs.rexx", ’w’) then do
/* This file will be called as a program, so add comment */

call writeln(PrfFile, ’/* Preferences clips for a message reader */’)
/* The SHOW(’C’) function returns a list of all clips */

Clips = show(’C’)
/* The POS() function is used to verify that there is **
** at least one more clip matching format used by this app. */

do while pos(’Rd_’, Clips) > 0
/* An iterative PARSE is used to separate the name of **
** each clip. */

parse var clips "Rd_" OneNam Clips
/* The current value is saved in a format that can be **
** called as a subroutine. */

call writeln(PrfFile, ’call setclip("Rd_’OneNam’", "’,
getclip(’Rd_RTnam’||OneNam)’")’)

/* Each clip set by the application is now cleared */
call setclip(’Rd_’OneClip)

end
call close(PrfFile)

end

/* ------------------------ end example ------------------------ */

The values in the clips need not be limited to short items like those
listed above. They may be used to hold sections of frequently-used code
that can be entered in the form of an in-line script and executed using
the INTERPRET instruction.

As an example, the string files defined in the TurboText key definitions
mentioned above are limited to a length of 255 characters. The limitation
isn’t severe, since disk macros can be called via key definitions, but
there are times when the performance penalty of calling a disk file can be
problematic. The clip list provides a middle ground: A complex in-line
script that is not bound by the 255 character limitation could be stored
on the clip list. The following key definition could then be used to
launch the script:



ARx_Tknq.ag 20 / 28

ALT-CURSOR_RIGHT ExecARexxString interpret getclip(’Rd_MoveDn’)

Also see OPEN() function
WRITELN() function
SHOW() function
DO instruction
POS() function
PARSE VAR instruction

Next: ENVIRONMENTAL VARIABLES | Prev: MESSAGE PORTS | Contents: Tutorial

1.17 ARexxGuide | Techniques (14 of 20) | ENVIRONMENTAL VARIABLES

Getting and setting environment variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Environmental variables have been a part of the Amiga OS since version
1.3. The values can be accessed directly in OS scripts by preceding the
variable name with the ‘$’ character:

‘echo $kickstart’ or ‘copy $srcfile to $destination’.

The same syntax can be used in ARexx only when the statement is sent as a
command to be executed by AmigaDOS. (See ADDRESS COMMAND .) If the

value of an enviromental variable is to be used within an ARexx script,
the interpreter has no simple way to access it.

The function library rexxarplib.library includes two functions, GetEnv()
and SetEnv(), that give scripts access to environmental variables. Other
function packages may contain similar functions, but it is difficult to
depend on function libraries if a script is distributed to other users.

An alternative is a set of user functions that can be included in any
script that needs access to environmental variables, or stored in the
REXX: directory to be called as external functions . These function check
for rexxarplib.library and use the functions from there if the library is
available. When the library function is called, its name is quoted,
preventing the interpreter from calling the internal function
recursively.

/* GetEnv() return the value of an environmental variable */
GetEnv: procedure

/* Arguments: **
** arg(1) := The name of the variable to retrieve **
** Returns a string */
/* Use function from rexxarplib if it’s available */

if show(’L’, ’rexxarplib.library’) then
return ’GetEnv’(arg(1))

/* OPEN() will fail if variable is not defined. Null will be **
** returned in that case */

if open(6Env, ’env:’arg(1), ’R’) then do
EnvVar = readln(6Env)
call close 6Env

end
else EnvVar = ’’

ARx_Tknq.ag 21 / 28

return EnvVar

/* SetEnv() Set the value of an environmental variable */
SetEnv: procedure

/* Arguments: **
** arg(1) := Name of variable to set **
** arg(2) := New value for variable **
** Returns a Boolean value */

/* Use function from rexxarplib if it’s available */
if show(’L’, ’rexxarplib.library’) then

return ’SetEnv’(arg(1),arg(2))

/**** Add makedir() option here ****/
if arg(2, ’E’) then do /* Open file only if second arg is supplied */

if open(6Env, ’env:’arg(1), ’W’) then do
/* [Success] will be TRUE or FALSE since it is assigned to **
** a logical expression . */

Success = (writech(6Env, arg(2)) > 0)
call close 6Env

end
else

Success = 0
return Success

end
else /* Var is deleted if there’s no value to set */

return delete(’env:’arg(1))

/* ------------------------ end example ------------------------ */

SetEnv() uses delete() , a function from rexxsupport.library . That is
one library that should be available on all Amigas using ARexx since it is
part of the ARexx distribution. It does, however, need to be explicitly
loaded with ADDLIB() before it is available.

Since the OPEN() function will not create a directory, SetEnv() will not
be able store a variable that includes a path specification for a
subdirectory in env: that does not yet exist. The OS ‘SET’ command has the
same limitation, but it can be overcome by adding a bit of code to the
user function:

/* Setenv option will create a subdirectory if it doesn’t exist */

Path = ParseFileName(arg(1), ’P’)
if Path > ’’ then

if ~exists(’env:’Path) & arg(2, ’E’) then
call makedir(’env:’Path)

/* ------------------------ end example ------------------------ */

Also see OPEN() function
READLN() function
WRITECH() function
ARG() function
EXISTS() function
MAKEDIR() function

ARx_Tknq.ag 22 / 28

The REXX standard defines an extension to the VALUE() funtion that can
be used to retrieve variables defined in an outside environment. The
extension is used in many REXX implementations to get and set environment
variables. It is not, unfortunately, available in ARexx.

Next: IN-LINE DATA | Prev: GLOBAL VARIABLES | Contents: Tutorial

1.18 ARexxGuide | Techniques (15 of 20) | IN-LINE DATA

Copy data from the program code
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Combined with the special variable SIGL , the SOURCELINE() function
provides a way to copy data from the program code. In the following
fragment, a range of compound variables is set in this manner:

InLineData:
DataL = GetLine()
do i = 0 until Data.i.FVal = ’ENDDATA’

parse value sourceline(i + DataL) with Data.i.FVal Data.i.SVal .
end
return i

SendLine:
return SIGL + 2

GetLine:
/* this sets the location of the data to be copied */

signal SendLine
/* DATA:
FooBar 78
MooBar 98
FooIsh 89
ENDDATA

*/

The location of the data is determined by calling the internal function
GetLine(), which transfers control, using the SIGNAL instruction, to the
subroutine SendLine(). The special variable SIGL is set to the line
number of the clause that called the subroutine. Since the clause ("signal
SendLine") is known to be two lines above the first line of data,
SendLine() returns the proper line number to the calling environment.

This technique is used in the script ARx_Reg.rexx which is distributed in
the ARexxGuide archive.

Also see DO instruction
PARSE VALUE instruction

Next: DATA SCRATCHPAD | Prev: ENVIRONMENTAL VARIABLES | Contents: Tutorial

1.19 ARexxGuide | Techniques (16 of 20) | DATA SCRATCHPAD



ARx_Tknq.ag 23 / 28

Data scratchpad using PUSH and QUEUE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PUSH and QUEUE can be used for more than just stacking commands on the

shell. In his ARexx manual, Bill Hawes mentions use of the instructions
to create a ’private scratchpad’ for a program. Strings stacked with the
instructions can be retrieved later in the same script using the
PARSE PULL instruction, but are also available to another script

launched from the first one. (Note, however, that if the scripts terminate
for some reason before data has been pulled from the scratchpad, the shell
will treat whatever remains as commands, probably causing a messy series
of error messages. Using SIGNAL traps to intercept error conditions and
clean up the data stack is recommended in this instance.)

Although there are more efficient and elegant ways to do this, the
following example suggests how PUSH and QUEUE can be used as a data
scratchpad.

Datafile format Program
---------------- --
01-Aug-1994 1400 /* Demo of PUSH and QUEUE */
02-Aug-1994 1300 arg AptFN .
01-Aug-1994 1000 TDt = upper(translate(date(),’-’,’ ’))
03-Aug-1994 1700 if open(1AptFile, AptFN, R) then do
06-Aug-1994 1100 do until eof(1AptFile)
03-Aug-1994 1430 Apt = readln(1AptFile)
01-Aug-1994 0900 if word(upper(Apt), 1) >= TDt then
04-Aug-1994 1030 if abbrev(upper(Apt), TDt) then
01-Aug-1994 0800 PUSH Apt

else
QUEUE Apt

end
end
do for lines()

parse pull Apt
say Apt

end

The PUSH instruction is used to place a record with the current date at
the top of the stack while QUEUE is used to put other dates at the end of
the stack. (Sorting the file -- even with the AmigaDOS Sort command --
would make this step unnecessary.) Dates earlier than [TDt] are discarded.
In this example, the data is simply printed to the shell. A more useful
alternative might be to rewrite it to an updated file. More significantly,
the PARSE PULL instruction could be left out of this script and included
in another one called from here. The second script could then read the
data from the stack and perform whatever actions are needed.

Also see IF instruction
OPEN() function
DO instruction
ABBREV() function
LINES() function
UPPER() function

Next: SEEKTORECORD() | Prev: IN-LINE DATA | Contents: Tutorial

ARx_Tknq.ag 24 / 28

1.20 ARexxGuide | Techniques (17 of 20) | SEEKTORECORD()

Retrieve a record from disk-based database
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The PARSE instruction can be used to divide a one-line record into its
component fields, as explained in the node Combining PARSE templates ,
but what about getting a specific record from a file that contains many
records?

This routine uses the file I/O functions to accomplish the task:

/* Retrive a record of defined length from a file */
SeekToRecord:

/* Arguments: **
** NamesDB := Name of database file in disk **
** RecNum := Sequential number of record to retrieve **
** RecSize := Total size of each record */

arg NamesDB, RecNum, RecSize

if open(DBFile, NamesDB, ’R’) then do
CurRecPos = seek(DBFile, RecNum * RecSize, ’B’)
Rec.RecNum = readch(DBFile, RecSize)
call close DBFile

end

Once the file is OPEN() , the SEEK() function is used to move to a
particular spot within the file. The location is determined by multiplying
the record size by the sequential record number. Finally, the entire record
is retrieved by using the READCH() function to input just the number of
characters used in a single record.

Next: INTERPRETED VARIABLES | Prev: DATA SCRATCHPAD | Contents: Tutorial

1.21 ARexxGuide | Techniques (18 of 20) | INTERPRETED VARIABLES

Interpreting strings as variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The VALUE() function is similar to a localized INTERPRET instruction.
It allows an expression to be used as a variable name that is then
treated as the variable itself would be if entered directly in the clause.

VALUE() may only be used where an expression is expected. It cannot, for
instance, be used as the left-value of an assignment clause since only a
symbol is valid in that position.

With VALUE(), the contents of one variable can be used to name another
variable:

/**/
[1] SunshineMom = ’Winnie’
[2] Winnie = ’Foo.1’
[3] Foo.1 = ’Minnie’’s Daughter’
[4] say SunshineMom >>> Winnie
[5] say value(SunshineMom) >>> Foo.1

ARx_Tknq.ag 25 / 28

[6] say value(value(SunshineMom)) >>> Minnie’s Daughter
[7] Child = ’Sunshine’; Relat = ’Mom’

/* a dynamically constructed variable is used below */
[9] say value(Child||Relat) >>> Winnie

/* [SunshineMom]’s value is output since that’s the derived var */

Lines 1 through 3 are standard assignment clauses , just as line 4 is the
same kind of SAY instruction used throughout this Guide.

The output of line 5, however, might seem strange. The value of
[SunshineMom], is ’Winnie’. It is the name [Winnie] that becomes the
object of the SAY instruction, so line 5 outputs the same result as the
simpler instruction ‘SAY Winnie’.

VALUE() is doubled up in line 6, showing that a function can be used as
the argument to VALUE(). Two substitutions have taken place here, giving
the same result as ‘SAY Foo.1’.

Line 9 demonstrates the use of variables in a concatenation operation
to build the variable name used in the instruction.

As explained in the section on compound variables , the value of the
stem symbol -- unlike that of the symbols forming its branches -- is

never a target of substitution when ARexx interprets the derived name
of a compound variable, but the VALUE() function allows even the stem to
have a derived name.

In the second example below, the value of [A] is substituted for the
unquoted variable and then concatenated with the string ’.1’. The
concatenation results in the variable FOO.1 whose value is output by
the SAY instruction.

foo.1 = 67; a = foo; say a.1 >>> A.1
foo.1 = 67; a = foo; say value(a’.1’) >>> 67

VALUE() can also be used in some circumstances to substitute a value for
the branches of a compound variable, which might be useful when the name
of one branch is assigned to another compound variable:

a.12 = ’foo’; c.1 = 12; say a.c.1; >>> A.C.1
a.12 = ’foo’; c.1 = 12; say value(’a.’c.1) >>> foo

The same result could be obtained more safely, however, by transferring
the value of the second compound variable to a simple variable:

a.12 = ’foo’; c.1 = 12; Hold = c.1; say a.Hold >>> foo

The argument to VALUE() must be a valid symbol. If it is not an error will
be generated:

/**/
Name = ’Winnie Foo’; Foo.Name = 1; Test.1 = ’Winnie Foo’
say Foo.Name
say value(’Foo.’Test.1)

This will output:
1

ARx_Tknq.ag 26 / 28

+++ Error 31 in line 4: Symbol expected

Line 3 will generate the expected value ‘1’, showing that a compound
variable with a derived name of ’FOO.Winnie Foo’ is valid. Line 4 causes
an error because the space in ’Winnie Foo’ makes it an invalid symbol name.

The SYMBOL() function can be used to check for a valid argument to
VALUE().

Next: CHECK UNIQUE DATATYPES | Prev: SEEKTORECORD() | Contents: Tutorial

1.22 ARexxGuide | Techniques (19 of 20) | CHECK UNIQUE DATATYPES

Check unique datatypes
~~~~~~~~~~~~~~~~~~~~~~
The VERIFY() function can be used to expand the range of DATATYPE()
checking in ARexx since it allows for validation of a specific range of
characters. A product number, for instance, might be constructed of any
3-digit number, followed by a dash, followed by any of the upper case
letters ‘A’ through ‘G’. The DATATYPE() function can’t validate something
that specific. VERIFY() can, however, check for such a limited range of
values:

/************ CheckProductNum.rexx ***********************************/
arg Num

if LENGTH(Num) ~= 7 then do
say ’Number must be 7 characters’
exit

end
/* xrange() returns a string of characters between those **
** specified as its arguments */

if VERIFY(Num, xrange(0,9)||xrange(’A’,’G’)’-’) = 0 then
if DATATYPE(left(Num,3), N) & DATATYPE(right(Num,3), U) then

say ’Good Number’
else

say ’Number is improper format.’
else do

/* The comma continuation token is used stretch to one **
** line of code over two physical lines in the following. */

say ’Invalid data at position’,
VERIFY(Num, xrange(0,9)||xrange(’A’,’G’)’-’)

say ’Code must be in this format:’
say ’ nnn-AAA’
say ’where <n> can be any number and <A> any letter between A and G’

end

/* ------------------------ end example ------------------------ */

Also see LENGTH() function
ARG instruction
IF instruction
XRANGE() function
SAY instruction



ARx_Tknq.ag 27 / 28

Next: LIBVER() | Prev: INTERPRETED VARIABLES | Contents: Tutorial

1.23 ARexxGuide | Techniques (20 of 20) | LIBVER()

Determine version number of any library
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Although the addlib() function accepts as an argument a mimimum version
number, it acts only on the integer part of the version. It is sometimes
necessary to limit a library to a version based both on the integer and
the fractional part of a version number.

The version number of any library and most programs -- even something that
is not yet loaded -- can be retrieved using a DOS command:

address command ’version’ ’libs:’Libname ’>env:LibVer’
LibVer = GetEnv(’env:LibVer’)

(
GetEnv()
is described as a user-function elsewhere and is also

available in rexxarplib.library or in RexxDosSupport.library or
rexxextend.library under different names.)

This method might be preferable to the method described below, but it is
slower and perhaps more demanding of system setup because it depends on
these factors:

-- The VERSION command must be available
-- the ’libs:’ device must be present on a mounted volume

The function below returns the same numerical information: a version
number that includes both an integer and a fraction. The name of any
library available on the system can be passed to the routine. Unlike the
‘VERSION’ command, however, this user function is limited to libraries in
memory.

To find the version of the Workbench being run, send ’version’ as an
argument. Any of the system libraries, including ‘exec.library’, can be
used to get a number which indicates, by its integer, the OS version being
used.

/* LibVer(): Retrieve the version number of a library */
LibVer: procedure

parse arg libname
if right(libname,8) ~= ’.library’ then

libname = libname’.library’
if ~showlist(’L’, libname) then

return -1
else do

call forbid /* probibit multitasking during read */
libver = import(offset(showlist(’L’,libname,,’a’),20),4)
call permit

end
return c2d(left(libver,2))’.’c2d(libver,2)

/* ------------------------ end example ------------------------ */

ARx_Tknq.ag 28 / 28

The first call to SHOWLIST() verifies that the requested library is in
memory since this function will not read the version number of an unloaded
library.

The function is used a second time with its address argument to determine
the base address of the library. A known offset number, 20, is applied to
that address with OFFSET() to calculate the actual address from which
data will be copied by IMPORT() . During the process of reading the system
list, multitasking is temporarily disabled with FORBID() , as it should be
whenever information is retrieved in this way.

The version information is stored in four bytes. The first two bytes store
the integer part of the version; the rightmost two bytes store the
fractional part. LEFT() is used to split out the first two bytes from
the four bytes copied. Because the information is stored as character
data, the C2D() function translates it to more familiar form. The second
argument to C2D() can be used to truncate input data from the right, so
the RIGHT() function is not needed for the data that represents the
fractional part of the version number.

The return value is built by concatenation of three expressions. The
numbers returned by the two C2D() functions are concatenated with a period
using one of the ‘virtual’ concatenation operators: Because the values are
abutted against one another, ARexx will combine them without a space. The
same string can be built using the explicit concatenation operator:

return c2d(left(libver,2)) || ’.’ || c2d(libver,2)

Because ARexx treats numbers as strings , the numbers returned by c2d()
can be directly concatenated to the string ’.’ without the kind of
translation required in most programming languages. The value returned
will be a valid number that could be used directly in an arithmetic
operation.

Also see PERMIT()

Next: Tutorial | Prev: CHECK UNIQUE DATATYPES | Contents: Tutorial

	ARx_Tknq.ag
	 ARexxGuide | TECHNIQUES
	 ARexxGuide | Techniques | ABOUT THIS SECTION
	 ARexxGuide | Techniques (1 of 20) | COUNTCHAR()
	 ARexxGuide | Techniques (2 of 20) | COUNTWORDS()
	 ARexxGuide | Techniques (3 of 20) | FORMAT OUTPUT
	ARexxGuide | Techniques (4 of 20) | FORMAT()
	 ARexxGuide | Techniques (5 of 20) | ADDCOMMA()
	 ARexxGuide | Techniques | ADDCOMMA() | Note: Alternative
	 ARexxGuide | Techniques (6 of 20) | WORDWRAP()
	 ARexxGuide | Techniques (7 of 20) | PARSEFILENAME()
	ARexxGuide | Techniques (8 of 20) | CONSOLE WINDOWS
	ARexxGuide | Techniques (9 of 20) | PRINTER OUTPUT
	ARexxGuide | Techniques (10 of 20) | READ/WRITE FILES
	ARexxGuide | Techniques (11 of 20) | COMMAND PIPE
	 ARexxGuide | Techniques (12 of 20) | USING MESSAGE PORTS
	 ARexxGuide | Techniques (13 of 20) | GLOBAL VARIABLES
	 ARexxGuide | Techniques (14 of 20) | ENVIRONMENTAL VARIABLES
	 ARexxGuide | Techniques (15 of 20) | IN-LINE DATA
	 ARexxGuide | Techniques (16 of 20) | DATA SCRATCHPAD
	ARexxGuide | Techniques (17 of 20) | SEEKTORECORD()
	 ARexxGuide | Techniques (18 of 20) | INTERPRETED VARIABLES
	 ARexxGuide | Techniques (19 of 20) | CHECK UNIQUE DATATYPES
	 ARexxGuide | Techniques (20 of 20) | LIBVER()

